
t - AD-A261 320

WL-TR-93- 1002 -Q
ADA COMPILER EVALUATION CAPABILITY
(ACEC) FINAL TECHNICAL REPORT RELEASE 3.0

THOMAS C. LEAVITT KERMIT TERRELL
BARBARA DECKER-LINDSEY SAM ASHBY

JULIE LEASTMAN DI
BOEING DEFENSE AND SPACE GROUP ELECTE
P.O. BOX 7730, MS K80-13 FEB26 1993
WICHITA KS 67277-7730 S
JUN 1992 c

FINAL REPORT FOR 10/09/90-07/27/92

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

93-04018

AVIONICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT PATTERSON AFB OH 45433 -7409

93 2 25 ()948

NOTICE

WHEN GOVERNMENT DRAWINGS, SPECIFICATIONS. OR OTHER DATA ARE USED FOR ANY

PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY GOVERNMENT- RELATED

PROCUREMENT. THE UNITED STATES GOVERNMENT INCURS NO RESPONSIBILITY OR ANY

OBLIGATION WHATSOEVER, THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED OR IN

ANY WAY SUPPLIED THE SAID DRAWINGS. SPECIFICATIONS. OR OTHER DATA. IS NOT 10
BE REGARDED BY IMPLICATION. OR OTHERWISE IN ANY MANNER CONSTRUED. AS LICENSING
THE HOLDER, OR ANY OTHER PERSON OR CORPORATION; OR AS CONVEYING ANY RIGHTS OR

PERMISSION TO MANUFACTURE, USE. OR SELL ANY PATENTED INVENTION THAT MAY IN ANY

WAY BE RELATED THERETO.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION

SRAYAOND SZYMA• I TIMOTHY G. KEARNS, Maj, USAF
Program Manager Chief

Readiness Technology Group

CHARLES H. KRUEGER, Chief
System Avionics Division
Avionics Directorate

IF YOUR ADDRESS HAS CHANGED. IF YOU WISH TO BE REMOVED FROM OUR MAILINE

LIST. OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION PLEASE

NOTIFY WL/AAAF , WRIGHT-PATTERSON AFB, ON 45433-;zo0 TO HELP MAINTAIN
A CURRENT MAILING LIST.

COPIES OF THIS REPORT SHOULO NOT BE RETURNED UNLESS RETURN IS REQUIRED BY

SECURITY CONSIDERATIONS. CONTRACTUAL OBLIGATIONS, OR NOTICE ON A SPECIFIC

DOCUMENT.

-ORT CCCUMENTATION PAGE *,# 4
,, - -' : . • •- •

A ` 'Lf2REPOR DA92 REOR TVP ANO~ DATES tOvtk(OSJUN 1992 FINAL 10/09190--07/27/92
.4 ITL` ',N ijýr,u ADUA CUWILER td(l~VA -:-- - N t7Ak~BlItj~ T'w FuF

(ACEC) FINAL TECHNICAL REPORT RELEASE 3.0 C F33615-87-C-1449
PE 63226
PR 2853

o THO11ASVC.KERIT TRRELL ' TA 01
BARBARA DECKER-LINDSEY SAM ASHBY WU 02
JULIE LEASTMAN

BOEING DEFENSE AND SPACE GROUP uc•' "&.'aS
P.O. BOX 7730, MS K80-13
WICHITA, KS 67277-7730

A-V i V~ff9ff9Ll~_6W10 SPONSý;i)C PA.NITONAJQ46'

WRIGHT LABORATORY "'•" -9..."' "
AIR FORCE SYSTEMS COMMAND
WL/AAAF, Attn: SZYMANSKI 513-2556548

7WMA--7JctT-- AM""''XCE (SPONSOR) THE ACEC HAS BEEN TRANSITIONED TO ASC/
1211 S. FERN ST SCSL, WPAFB, FOR LONG-TERM MAINTENANCE
ARLINGTON VA 22202 AND ENHANCEMENT. ACEC VERSION 4.0

EXPECTED COMPLETION IS IN APRIL 1993.
t5.:P-R-O"ED FPOR PUBLMCERELEASE; DISTRIBUTION IS 12b OW;NBUTION COD

UNLIMITED.

THIS REPORT DISCUSSES ACEC VERSION 3.0 AND COMPARES IT TO THE PREVIOUS RELEASES.
IT ALSO DISCUSSES LESSONS LEARNED DURING THE DEVELOPMENT OF THE ACEC AND REVIEWS
A NUMBER OF SIGNIFICANT FINDINGS.

..ADA.COPILER, EVALUATION, BENCHMARKING. I i5 ,29
HIL-STD- 1815A

-'r "CE CODE

UNCLASSIFIED UNCLASSIFIED UNtHeLAs-IFIED UL

Table of Contents

1. SCOPE ...
1.1 ID E N T IFIC A T IO N
1.2 P U R P O S E
1.3 IN T R O D U C T IO N

2. A PPL IC A BL E DO C U M EN T S
2.1 GOVERNMENT DOCUM.ENTS s
2.2 NON-GOVERNMENT DOCUMENTS

3. ANALYSIS OF THE TEST SUITE
3.1 CONFIRM ED EXPECTATIONS
3.1.1 Com parative Analysis (CA) 17
3.1.2 Single System A nalysis 18
3.1.3 Include ...
3.1.4 Timing ..
3.1.5 Menu Interface For Analysis Tools 20
3.1.6 G uides 21
3.1.7 Assessors ..
3.1.8 Renam ing

3....9..Pr..te.....
................ . . .3 .1.9 P retest I............ 2

3.2 PROBLEMS ENCOUNTERED .. 23
3.3 POSSIBLE ENHANCEMENTS 24

4. S U M M A R Y 28

5. N O T E S 29
5.1 ABBREVIATIONS AND ACRONYMS 29

DTIC qUA=ITY u1iSPEr7TD 3

"AcceslOn For

NTIS CRA&M
o r _ T .AB01W1 TAf3

U"idrVOeunced d C

oy

-AvatI]bsI~ty Codes

AVdJ1 andjbor
S S W1ecia-\e ia

I. SCOPE

This section identifies the Ada Compiler Evaluation Capability (ACEC) Release 3.0 product.
states its purpose, and summarizes the purpose and contents of this Final Technical Report-

I1I IDENTIFICATION

This is the Final Technical Report for the ACEC Release 3.0. It was developed by Boeing De-
fense & Sprce Group, Product Support Division under contract to the Wright Laboratory

The first release of the ACEC program developed a Software Product consisting of a suite of
benchmark test programs. support tools, a Reader's Guide, a User's Guide, and a Version De-
scription Document (VDD).

The second release of the ACEC corrected problems found in the first release; approximately
300 new performance tests, assessors for program library systems, symbolic debuggers, and
system diagnostics, a new tool to simplify the preparation of input to MEDIAN. and a Singie
System Analysis (SSA) tool; and upgraded supporting docunmentation to permit a user to assess
the performance of Ada compilation systems.

The third release of the ACEC significantly improves usability and coverage. It adds:

"* A systematic Pretest phase which guides the user through the adaptation necessary to run the
ACEC on a new compilation system and the recording of the choices made for later refer-
ence.

"* The user documentation has been enhanced, and provides more information to simplify exe-
cution of the ACEC and interpretation of the results.

"• The sample command files have been modified in order to simplify the effort required to
adapt to other Ada compilation systems.

" New performance tests have been added, including test problems: to determine the order of
processing of alternatives in a SELECT statement. to determine the layout of arrays (row or
column major); to report on the variability of the size of task control blocks, activation re-
cords, variant records and objects of an unconstrained type; to calculate task-switching time:
to report whether a compiler will evaluate an aritunetic expression in a way that will pro-
duce a result different from the canonical order, to provide an example application of an in-
ference engine; to systematically evaluate the variation in performance as the size of a sec-
tion of code increases; to compare differences in coding style based on IF statements versus
exceptions; and to explore the run-time overhead of entering blocks that declare uninitialized
variables.

"* The ACEC performance tests have been renamed, repackaged and reorganized into groups
and subgroups by test objective. This is to give the users an easier comprehension of the over
1600 test elements and to provide test result analysis flexibility. This reorganization, along

5

with added functionality, allows the user to assign weights for individual tests and for groups
of related tests for analysis purposes.

"* The data-gathering and analysis tasks have been automated, eliminaing many of the time-
consuming and cumbersome compile, link and run steps in previous versions. The Compara-
tive Analysis tool provides confidence intervals on system factors between problems within
groups of related tests, and between the factors calculated for different groups.

" Capacity tests for both run time and compile/link time have been added.

"* Systematic Compile Speed tests have been added. These tests are designed to test the sensi-
tivity of compile speeds to different inguage feature usage.

1.2 PURPOSE

The purpose of this document is to review the problems encountered and the lessons learned in
the process of developing the third release of the ACEC Software Product.

The descriptions on how to use the product have been presented in the Guides. Information con-
tained in the Guides will not be repeated here.

The numeric results of the ACEC Release 3.0 testing are presented in the ACEC Software Test
Report for Release 3.0 and will not be repeated here.

1.3 1I'NlRODUCTION

The ACEC group in Boeing Defense & Space Group, Product Support Division, Avionics Sys-
tems and Software Department, tested the ACEC Release 3.0 in November - December 1991.
The ACEC was tested on five trial systems, 3 of which were the same as were used to test
ACEC Release 2.0: DEC Ada VAX/VMS self-hosted: TeleSoft VAX/VMS self-hosted; and
the Verdix self-hosted system for the Silicon Graphics (a UNIX-based system). The VAX/VMS
hosted 1750A targeted compilation system used in Release 2.0 was replaced with the TLD
VAX/VMS hosted 1750A targeted compilation system (using a different target processor). The
Meridian self-hosted compilation system for the DECStation (another UNIX-based operating
system) was used in place of the ALSYS self-hosted compilation system on the Apollo.

The ACEC Release 3.0 Software Product consists of:

"* A set of tests and procedures forming a Pretest which guides an ACEC user step-by-step
through the process of adapting the ACEC product to a new compilation system.

"* A suite of performance test programs.

"* A set of supporting packages.

These include a preprocessor to incorporate the timing loop in the test programs, a portable
implementation of a math library, and packages defining global types, variables, and subpro-
grams for use in the test suite and analysis tools.

6

"* A set of analysis tools.

These include CONDENSE, MENU, Comparative Analysis (CA), and Single System Analy-
sis (SSA).

"* A set of assessors for diagnostics, symbolic debuggers, program library systems, and compi-
lation system capacity limits.

"* Sample command files to compile and execute the tools and rests for a VMS and for a
UNIX-based system which can be used as guides for porting to other systems.

This report assumes that the reader is familiar with the ACEC Release 3.0 User's Guide, the
Reader's Guide, and the Version Description Document (VDD). The reader should refer to the
VDD Release 3.0 for a description of the tests. Information from the Software Test Report Re-
lease 3.0 is also referenced.

This document reviews the development of the third release of the ACEC Software Product. It
gives an analysis of results and a review of the lessons learned.

7

2. APPLICABLE DOCUMENTS

The following documents are referenced in this guide.

2.1 GOVERNMENT DOC UMENTS

MIL-STD-1815A Reference Manual for the Ada Programming Language (LRM)
2.2 NON-GOVERNMENT DOCUMENTS

D500-12563-l Ada Compiler Evaluation Capability (ACEC)
Version Description Document (VDD) Release 3.0
Boeing Defense & Space Group
Product Support Division
PrO. Box 7730

Wichita, Kansas

D500-12564-1 Ada Compiler Evaluation Capability (ACEC)
Technical Operating Report (TOR)
User's Guide Release 3.0
Boeing Defense & Space Group

Product Support Division

D500-12565-1 Ada Compiler Evaluation Capability (ACEC)
Technical Operating Report (TOR)
Reader's Guide Release 3.0
Boeing Defense & Space Group
Product Support Division

D500- 12570-I Ada Compiler Evaluation Capability (ACEC)
Software Test Report Release 3.0
Boeing Defense & Space Group

Product Support Division

m8

3. ANALYSIS OF THE TEST SUITE

The following table displays the test problems where one of the trial systems used in FQT had a
residual for execution time of less than or equal to a tenth, or gyeater than or equal to ten. Such
highly variable results highlight test problems where systems may have taken very different ap-
proaches, and may identify problems where systems are not performing comparable operations.
The trial systems are named V91, T_91, S-91, M91, and D91, as discussed in the ACEC
Software Test Report Release 3.0. The full set of numeric results obtained by CA on the trial
system data are presented in the Software Test Report Release 3.0 and will not be duplicated
here.

Some test problems are mentioned more than once because they had exceptional residuals on
more than one compilation system

PROBLEM NAME

RESIDUAL
io-sq-io.copy_02 0.01
drbabool_arrays 29 0.01
io sq io_copy_01 0,01
dra_array aggreg.01 0.01
draoarray oper_20 0.01
io-sqrio-scan_ 1 0.01
dr _aaarrayaggreg_01 0.01
drba bool arrays_28 0.01
iosqo..ocopy20Z 0.02
dr_ba_bool arraysJ3 0.02
io-sq_io_copy.. 1 0.02
dr._ba,_boolarrays t4 0.02
drbajbool=arrays_ 15 0.02
dr_ba_bool .arrays_17 0.02
drba_bool_arrays_32 0.02
io-sq-io.scan 12 0.02
io ds io 04 0.03
dr.be...•oloexpress. 12 0.03
dr.be-boolSexpress_ I2a 0.03
dr-_aaarray aggreg_01 0.03
iotfjextio_flt_strj03 0.03
drba_ boolarrays_29 0.03
dr ba bool..arxays_ 1 0.03
dr-aa_arrayaggreg_01 0.03
op a ahas_08 0.03
dr_baboolarraysl7 0.04
dr-ba bool arrays_12 0.04

iodaio scan_08 0.04
opja._alias_12 0.04

9

io_.sq_io_17 0.04

ioJ-tftextJiO-lLtstrfil 0.04

opjv-toop-invaY-O 8 0.05
jo-tf-text~jo-fit str...02 0.05
dogrp....rvpack-ý24 0.05
&dr_.aýbool-MarrYS-1 0.05

opjfs-focldsiilp_ 2 4 0.05
dr-ba-ýbool_arrays_2 8 0.05

po...paAjdibrary_.07 0.05

io-dplio4atte!TI_7 0.05
do~.rm..rep4paCk- 4 9 0.05

do~rp~rep..paCk_19 0.05
dojrp-ep..pa~Ck_54 0.05
op..fs fold-sirnpj 7 0.06
io dujourlifOS 0.06

dr-ba-jool-arraYS- 3 2 0.06
op~oe__orderý_of~eval_20 0.06

io..da-io -scan_15 0.06

dr_ba-bool-arrays-.29 0.06
io_dp..jo.patterfl08 0.06

dr-ba-bool-arraysi14 0.06
dr~tejype..eflum_08 0.06
dr_ba_bool_affays-..23 0.06

opjfs-fold-simnp.. 21 0.06
opjv -oop~invarJ.09 0.06
io-i-text-io-int-str_02 0.06

io...da-io..scafl_ 04 0.06
jo-tftext-jo-fit~str_01 0.06
io_if_text-jo_fit_s$tr_03 0.07

io_dpJQ...patteflLO 6 0.07
mns ccexpress-cat_0 1 0.07

io__dr~jojecuri 1O 0.07
io di_io_80_20_03 0.07

io-dp~io..pattem_0~7 0.08
jo_rx~io...01 00

dr-ba-bool-arrays-13 0.08
dr-ba-bool-arraYS-14 0.08
xh -er -except.raSe_-03 0.08

io~~di_io_80_20.95 0.08
opj lvoop-invar....O 0.08

iojr iojoecur...OI 0.08
io_dplio.patterfl 08 0.09
iojtx-jo_09 0.09
opo._.as.age_..siinp-O 0.09
io-tx~jo_24 0.09
dr~..ba_bool-arraysjl5 0.09

I0

do cu conv_ unck 01 0.09
msecexpress_cat_0l 0.09
dr ao_array-oper-33 0.10
dr be_bool expressj12a 0.10
st isif code_style_29 0.10
dr ao-array.oper_32 0.10
drbabool_arrays_05 0.10
drba_bool_arrays_07 0.10
drbaboolarrays I 1 0.10
dr-rdrecdiscr_02 0.10
st is if codestyle_29 11.34
iotxio_09 12.17
io_txinst_05 12.41
io_tx_inst _03 13.54
io_tx-inst_02 19.16
iotxinst 01 19.20
io txinst_04 24.12

The following alphabetic list of performance problem names describes the features in each of

these problems and the systems which were flagged as exceptional

PROBLEM NAME APPARENT REASON

do cu convunck_01 This problem tests unchecked conversions
by passing a (converted) array parameter
to a function. No explicit code is
required to support the conversion.
V91 was exceptionally slow and S_91 was
exceptionally fast. The low subprogram
overhead on S91 contributed to its
high performance on this problem.

do-rp-rep-pack- 19 This is a test of fetching elements from
a packed array. M_91 was exceptionally
fast on this -problem, perhaps because
the system did NOT pack the array,
permitting faster access than the other systems.

do.rp rep_.pack_24 This is a test of fetching elements from
a packed array. M 91 was exceptionally
fast on this problem, perhaps because
the system did NOT pack the array,
permitting faster at tss than the other systems.

do-rp-reppack.49 This is a test of referencing elements
from packed and unpacked arrays. M_91
was exceptionally fast on this problem,
perhaps because the system did NOT
pack the array, permitting faster

11

access than the other systems.
dorp-rep-pack_54 This is a test of fetching elements from

a packed array. M_91 was exceptionally
fast on this problem, perhaps because
the system did NOT pack the array,
permitting faster access than the other systems.

dr_aa-array aggreg_0I This problem declares a constant array
initialized with literals. M_91 does
it particularly poorly and V9 1, T_91,
Sl9 and D_91 (by comparison to the

mean time for the problem) do it particularly well.
dr-ao-arrayqoper. 20 This problem deals with initializing

a constant array with another array
(which might be optimized by effectively
renaming). D.91 was exceptionally fast
ano M_91 was exceptionally slow on this problem.

dr_ao arrayoperJ32 This problem makes repeated accesses
to an element of a 2-D array whose
actual subscripts are nested FOR loop
indexes. This is an important
special case of strength reduction.
M_91 did exceptionally well.

drao.array.oper_33 This problem makes repeated accesses
to an element of a 2-D array whose
actual subscripts are nested FOR loop
indexes. This is an important
special case of strength reduction.
M-91 did exceptionally well.

dr ba boolarrays_05 This problem tests boolean OR operation
on a small unpacked boolean array.
V_91 was exceptionally fast. Apparently
both it and T._l did NOT call on
run-time library routines to perform the work.

dr ba bool_arrays_07 This problem tests boolean XOR operation
on a small unpacked boolean array.
V_.91 was exceptionally fast. Apparently
both it and T_91 did NOT call on
run-time library routines to perform the work.

dr ba boolarrays-i I This problem performs boolean
operations on small packed boolean
arrays. T_91 and S_91 were both
exceptionally fast (only a small number
of instructions were performed).

dr ba_bool_arrays_12 This problem performs boolean
operations on small packed boolean
arrays. T_9t was exceptionally fast

12

requiring only a small number of
msuluctiomS to be executed-

dr ba_bool_arrays_ 13 This problem performs boolean
operations on small packed boolean
arrays. T_91 and S 91 were
exceptionally fast requing txly a
small number of rstrucuons to be
executed M-91 was exceptiondly slow

dr-ba_bool_arrays_ 14 This problem performs a simple boolean
AND on two small packed boolean
arrays. V•91, T-9 1 dS91 were
exceptionally fast requitng only a
small number of instructions to be executed

dr-ba_bool_arrays_ 15 This problem pertorms a simple boolean
OR on two small packed boolean
arrays. V 91, T 91 andS 91 were
exceptionally fast requiring only a
small number of Lnstrucuons to be executed

drbabool_arrays 17 This problem performs a sniple boolean
XOR on two small packed boolean
arrays. V91 and T_91 were
exceptionally fast requiring only a
small number of instructions to be executed,

dr-ba-bool _arrays_ 23 This problem performs simple boolean
AND and "=- operations on a long
unpacked boolean array T_91 supports
it exceptsonally well. perhaps with inline code

dr-ba-bool_arrays_28 This problem performs an OR operation
on a packed boolean array of saze 16
V_91 and T-91 were excepuonally fast
(and S_91 was also fairly fast), each
taking a few instnuctions to perform
the test problem.

dr-babool_arrays_ 129 This problem is surular to
dr babool_arrays_ 28 but uses for one
operand a named aggregate with literal
values rather than a simple variable.
For all but M_91L the times of the
problems a&e indistingutshable (as
was hoped). V91. T_91 and S-91 were
exceptionally fast. and M_91 was
exceptionally slow (apparently
constructing the aggregate at run time).

dr-baboot_arrays_32 This problem is similar to
drbaboolarrays_28 but uses for one
operand a subscripted array reference.

13

rather than a simple variable.
V_91 and T_91 were exceptionally fast,

and S91 was only slightly slower.

dr bebool express 12 This problem performs bit marupulation
using array indexes on a packed array

T_91 is exceptionally fast.
dr bebool-expressI2a This problem performs bit manipulation using

array.wide logical operators on a
packed array. T_91 and S 91 are
exceptionally fast.

dr rd-rec-discr._02 This problem checks a discriminated
record and raises CONSTRAINT ERROR.
D_91 was exceptionally fast at
processing the exception. T-91 was
almost exceptional.

dr te_-ype-enum_08 This test problem explores using
representation clauses to specify
values for an enumerated type. D_91 was
exceptionally fast.

to-da-io-scan_04 This is an 1/0 operation where large
differences between systems are
expected and where caching and buffering
and general Operating System 110
processing greatly influences
performance. M_91 was exceptionally fast.

io da io-scan_08 Direct file 1/0 operation test. M_91
was exceptionally fast.

io da io-scan_15 Direct file I/0 operation test. S91
was exceptionally fast.

iodiio_80_20_03 Direct file I1O operation test on a
file with 10_000 records. M-91 was
exceptionally fast.

io di io_80_20_05 Direct file 1/0 operation test on a
file with 100000 records. M-91 was
exceptionally fast.

io-dpjio_panem 06 Direct file 1/0 operation test.
S91 and M_91 were exceptionally fast.

io dpto.io pantem_07 Direct file 1/0 operation test.
S_91 and M_91 were exceptionally fast.

io-dpio_.panterm_08 Direct file 1/0 operation test.
S_91 and Mgl9 were exceptionally fast.

io dr io recur_01 Direct file 1/0 operation test.
S_91 and M_91 were exceptionally fast.

io ds io_04 I/O operation. M_91 was exceptionally fast.
iodu iounif_05 Direct file 1/0 operation test reading

from file with 100_000 records. S_91

14

was exceptionally fast.
io-sq.io_17 Open and close a sequential file. M_91

was exceptionally fast.
io_sq_iocopy. 01 Sequential file 1/0 operation test.

V_91 and M_91 were exceptionally fast.
io.sqjio-copy_02 Sequential file WO operation test.

V91 and M_91 were exceptionally fast.
iosqjio_scanl I Sequential 1/O operation test, writing

variable length records, V91 was
exceptionally fast.

io-sq-io.scanj12 Sequential I/O operation test, reading
variable length records. V_91 was
exceptionally fast.

io_tftext io fit str_ 01 Put to a string. Test of FLOAT_1O
conversions. V91 and M91 were
exceptionally fast.

io tftext io fit-str_02 Put to a string. Test of FLOAT_10
conversions. V_91 was exceptionally fast.

iotftext io fit str_03 Put to a string. Test of FLOAT-IO
conversions. V_91 and M_91 were
exceptionally fast.

io ti textio_mt_str_02 Put to a string. Test of INTEGER_10
conversions. V-91 was exceptionally fast.

iotx_inst_01 Instantiate enumeration I/O. D91 was
exceptionally slow.

iortxinst_02 Instantiate enumeration I/O. D_91 was
exceptionally slow.

io_tx_inst_03 String assignment. D_91 was
exceptionally slow.

io_tx_mst_04 Use of 'image attribute. D-91 was
exceptionally slow.

iotx_inst_05 Literal string assignment. D_91 was
exceptionally slow.

oitx io_01 Open and close a text file. M_91 was
exceptionally fast.

io tx io_09 1/0 operation, reset file. S_91 was
exceptionally slow. M91 was
exceptionally fast.

io tx io_24 Console I/O operation. V_91 was
exceptionally fast.

ms_ec_..expressscat_01 This problem uses the string concatenation
operations and slices. V_91 and T I91
were exceptionally fast.

op-as-alge-simp_06 The problem contains a multiple by a
literal "1." It was exceptionally fast
on V_91, because it folded the operation.

15

opjfa-alias_08 Thids problem contains complex foldable
code. T_91 was exceptionally fast.

op-fa-alias_ 12 This problem contains complex foldable
code. T_91 was exceptionally fast.

op-fs-fold-simp 17 This problem contains code with foldable
subexpressions. S91 was exceptionally
fast, and T_91 was also fairly fast.

op-fs-fold-simp 21 This problem contains'code with foldable
subexpressions, if a compiler propagates
a literal assignment to a variable
declared with a CONSTANT attribute.
S_91 was exceptionally fast.

opjfsjfoldsimp_24 This problem contains foldable literal
subexpressions. S_91 was exceptionally fast.

op Ivjloopjinvar-01 This problem contains a FOR loop with one
invariant assignment within it. It
could be optimized into one assignment.
removing the invariant code from the
loop and removing the (now) redundant
loop overhead. M_91 was exceptionally fast.

op-lv-loop-invar_08 This problem tests several cases where
applying loop invariant motion could be
applied to reordering expressions
across parentheses. V-91 was exceptionally fast.

op jv-loop_invar_09 This is a version of op-jvjloop-invar_08
using type FLOAT9.

opoeorder_of_eval_20 One of the systems uses extended
precision temporaries to evaluate an
expression and in so doing avoids
raising an exception (exception raising
can be expensive). This is a valid
comparison test, even though the
problem will raise an exception on some
systems arid not on others because the
intent of the test is to determine
precisely this behavior. S-91 was
exceptionally fast.

po-pa.d-library_07 This problem tests for elaborating a
package declaration which requires
dynamically-sized storage. M_91 was
exceptionally fast.

st-is-if code-style_29 This problem raises a CONSTRAINT_ERROR
exception when converting to a user-
defined subtype. T_91 was exceptionally fast.

xher exceptjraise_03 This problem declares a block with
an exception handler for a user-

16

defined exception. The exception
is NOT raised, so the problem is a
measure of block entry and exit time.
S_91 was exceptionally fast (and
V_91 was almost exceptional.

In this list of exceptional test problems, I/0 operations occur frequently, followed by operations
on packed boolean arrays and (to a lesser extent) exception processing. Examining the particu-
lar systems marked as exceptional (see Test Report for details) shows that it is not true that
compilation systems follow a simple linear ranking, with all systems optimizing the "simple"
problems and the better systems optimizing more of the "harder" problems. A system which
does not generally optimize many problems is sometimes the only system to optimize one par-
ticular problem. This behavior may not match a priori expectations, but it does reflect actual
behavior.

3.1 CONFIRMED EXPECTATIONS

The following subsections list design decisions which worked well.

3.1.1 Comparative Analysis fCA)

In analyzing results from several systems, some type of statistical analysis tool such as CA is a
practical necessity for a test suite with more than a small number of test problems. The analysis
focuses the attention of the ACEC users on the test problems with "unusual" results. It permits a
form of report-by-exception where ACEC users can concentrate their attention on the test prob-
lems with anomalous performance. Since most test problems will not be flagged by CA as
outliers, ACEC users will be able to "skim" over most of them and focus on those where large
differences between systems were observed.

Without any comparative analysis tool, a test suite would require users to "understand" each of
the test problems, at least to know if a result on one system was good, bad, or indifferent. The
residual matrix is very helpful since it establishes a normalized metric for test results where a
residual close to one is "typical." No analysis tool can extract more information from a set of
data than is implicit in the collection of "raw" measurements, but it can make the relationships
between data more apparent. It would be very easy to overlook the fact that a system executes
some test problems twice as fast as typical when all the data is presented as one large table of
timing measurements. It is important to prevent users from being overwhelmed by the volume
of data and CA serves this role.

Changes added to CA in Release 3.0 provided features which should be useful:

* Analysis by groups

The CA tool now performs its analysis on groups of related problems rather than on the en-
tire set of test problems, and does a summary analysis over the groups. This will permit users
to more easily discern the relative performance of systems on the (preselected) groups. For
example, comparing system performance on I/O-intensive test problems is more straightfor-

17

ward now than in Release 2.0 because Release 3.0 has identified a set of 1/0 test problems
and CA will compare these sets of problems between systems.

" Confidence intervals

The CA tool now calculates confidence intervals rather than point estimates for system fac-
tors, and will identify whether differences in system factors found by CA are statistically sig-
nificant. Using the Release 2.0 MEDIAN tool, some users may have concluded that one sys-
tem was better than another because the system factor was better, when in fact the difference
between the systems was not statistically significant. This was the major reason for the
change in the statistical analysis algorithm.

" Initial report summary

Several changes were made to the CA reports to help users. Provisions were made for users
to provide descriptive text about the systems being compared, in order to more clearly iden-
tify the system on the CA report. Users are encouraged to provide version numbers of com-
pilers and operating systems and to describe the hardware configuration tested. System fac-
tors and confidence intervals are displayed graphically. Graphics also show whether there is
a statistically significant difference between computed system factors.

CA shows the count of errors of each type on each system. Error data is important because a
fast system which doesn't support the full Ada language is not necessarily "beter" than a
slower system which supports more of the language.

"* Weights

CA now provides the capability for users to provide weights for individual groups, or for in-
dividual test problems.

"* Performance

It is now considerably faster to re-analyze sets of data, including and excluding different sys-
tems, in CA than it was with MEDIAN in Release 2.0. In Release 3.0, it is not necessary to

invoke the Ada compiler to process the performance data. This enhanced performance in

reporting should encourage more exploration of the data that the users collect.

The analysis by groups and the confidence levels fill a need reported by a number of ACEC
users.

3.1.2 Single System Analysis

The Single System Analysis (SSA) tool was not substantially changed from Release 2.0 (other
than reflecting the renaming of test problems). It still provides an automated way of comparing
and displaying results from sets of related performance test problems. ACEC users had to
manually compare results of related tests before the development of this tool, however, the
speed and automated nature of the tool make such comparisons much simpler.

18

3.1.3 Include

The Include tool (zg_incld) is an ACEC support tool used to textually expand Ada source text.
It is used to insert the timing loop code into the test programs. Refer to the User's Guide for a
discussion on the use of this tool.

It permits modification of the timing code:

"* To accommodate measuring either Central Processing Unit (CPU) time or elapsed tune

"* To accommodate the lack of support for the Iabel'ADDRESS attribute.

The flexibility provided by the Include processing has proved valuable in Release 3.0 because
significant changes were made to the timing loop (refer to the next section) by changing a few
files. It was not necessary to modify the source code bracketing all 1627 test problems,

3.1.4 Timing

The timing loop code is responsible for measuring the execution time and code expansion for
each test problem. ACEC users wishing to construct their own test problems will find the con-
ventions for using the timing loop and how to isolate language features to be tested are dis-
cussed in the Reader's Guide.

The timing loop code was changed from the second release in several ways:

* IN1TTTIME

The approach to initializing timing loop parameters was changed. In Release 2.0, the initiali-
zation code was inserted by Include into every test program and as a result was compiled and
executed many times (once for each test program). In Release 3.0. the initialization code is
compiled and executed once for each compilation option (optimization, checking, no-
optimization, and checking suppressed). The initialization code in each test program copies
the timing loop parameters from files created during Pretest (see section 3.1.9 for a discus-
sion of the ACEC Pretest) and then inserts a section of code which will measure the time to
execute a sample "null" loop and verify that the copied timing loop parameters are consistent
with the measurements of this sample loop. If this verification checking were not performed,
wrong timings could be obtained because different compilation options (suppression of
checking, optimization levels, etc.) can change the values of the timing loop parameters.

This approach reduces the total lines of code passed through the compiler (the verification
code is much smaller than the initialization code was in Release 2.0). The amount of time
spent executing initialization code in each test program is also reduced because one verifica-
tion loop can execute much faster than the "full" initialization code.

An option is provided to use zg-incld to incorporate the "full" initialization code, as was
done in Release 2.0, for users who wish to explore the performance effects of systems with
many compiler options.

19

* EXCESSIVETIME

All the test programs in the StorageReclamationjImplicit subgroup in Release 3.0 make an
initial measurement to estimate the time to run the problem to completion (the code is exe-
cuted 100_000 times). If this estimate is larger than the value EXCESSIVE_TIME, the test
problem execution is skipped and a special error code written.

In Release 2.0, only seven of the problems observed to exceed time Limits on the trial sys-
tems included this check. The Release 3.0 approach will be safer in skipping long ruming
test problems unless the user explicitly modifies code to permit longer running problems to
complete.

* EXCESSIVEVARIABILITY

In order to reduce the number of test problems which get unreliable measurement error
codes, the value of EXCESSIVE_VARIABILrIY was reduced from 2.0 to 1.25. This will
have the effect of making it more likely that the timing loop control logic wiU detect exces-
sive variability and "jump" to a larger value of the inner loop count, producing fewer unreli-
able measurements.

A reduction in the unreliable measurement error codes was observed on the trial systems.

* ERRLARGENEGATIVETIME

The timing loop code uses a dual-loop approach which calculates the execution time for a
test problem by subtracting the null loop time from the elapsed time per iterations. When the
elapsed time per iteration is less than the null loop time, a spurious negative time measure-
ment might be indicated. When this happened in release 2.0, a zero time was reported when
the negative time was less than the variation in the null loop time and an unreliable time was
reported otherwise. This was changed in release 3.0 so that a new error code
(ERRLARGE..NEGATIVETIME) is returned when the elapsed time per iteration is sig-
nificantly less than the null loop time.

The changes made in Release 3.0 will both enhance the efficiency of gathering data (it should
take less time to collect the measurements) and increase the chances that reliable data will be
collected.

The compile and link times in Release 3.0 are measured and output by Ada programs rather
than job control procedures. This permits easier adaptation and provides for automated collec-
tion of data for analysis because the format of the compilation/link time data is implementation-
independent (it is output as a value of the predefined time DURATION).

3.1.5 Menu Interface For Analysis Tools

The new interactive MENU interface to the analysis tools provided in Release 3.0 provides
benefits in several areas:

20

It is easier to use.

The MENU interface to the analysis tools is easier to use and faster to learn than the manual
manipulations which would have been required to perform the corresponding options in Re-
lease 2.0.

The MENU interface should increase the confidence of new ACEC users who will be able to
obtain useful results with less effort than with prior releases.

It is faster.

The CA tool now runs much faster because a new analysis will not involve a recompilation
and link. The faster execution time of the tool will make interactive use feasible and encour-
age ACEC users to explore more analysis options.

* It eliminates some misleading results.

The CONDENSE tool (comparable to Release 2.0 FORMAT tool) reads logs and database
files and produces report files showing missing data, erroneous problems and duplicate prob-
lems. It includes consistency checking to avoid some types of errors. For example, in re-
lease 2.0 the compilation time was always reported. A compiler might fail quickly and reject
a valid ACEC program. This behavior distorted the analysis of compilation speeds because
it made a system which failed quickly look fast when analyzing compilation times. In re-
lease 3.0, the compilation time for a program is set to an error code when there is no valid
execution time for the test problems contained within it.

3.1.6 Guides

The writing of effective user documentation is difficult and time consuming. It is also very tim-
portant to the usability of a product, particularly when there is no provision for telephone "hot-
lines" for helping users who run into problems.

The ACEC user documentation is extensive.

The User's Guide presents a step-by-step guide to using the ACEC. It now includes a
Troubleshooting Guide appendix discussing common problems, symptoms and workarounds. It
includes copies of all the assessor summary report forms.

The Reader's Guide discusses issues involved in understanding the results produced by the test
suite, discusses background issues in evaluation and benchmarking, and provides guidelines for
users writing their own test problems.

The ACEC Version Description Document (VDD) contains useful information about the test
suite itself, descriptions of the individual test problems and descriptions of the assessor scenar-
ios.

The revised documents were well received by the beta test sites.

21

3-1-7 Assessors

Release 3.0 of the ACEC includes assessors for the Ada program library management system.
the diagnostic messages, the symbolic debugger and system capacities.

The Capacity Assessor is new in Release 3.0 and contains 32 compile-time and 9 run-time fea-
ture tests. The Capacity Assessor requires some system-dependent adaptation in the host system
command files which was not particularly difficult on any of the trial systems. When running
the Capacity Assessor with limits large enough to find maximum system capacities, the tests
can take a long time to complete, however, this phenomena is expected on systems which have
large limits.

The assessors have generally worked well, however, they do require more programmer effort
than we might have liked because the ACEC user must manually adapt them to each system
being evaluated.

3.1.8 Renaming

All the test problems and tools have been renamed and repackaged to reflect logical groupings
of related programs.

The performance tests have been organized into groups and subgroups (reflected in the first five
characters of the ,ide name) making it easy to select subsets of test problems to run.

In general, each performance test is now in a separate compilation unit. Performance test pro-
grams WITH a group of procedures containing individual tests and then call on them. Before
compiling the test problem procedures, a file with the same name is compiled which will write
an error code indicating compile-time failure if it is called. If there is an error in compiling Lhe
"real" problem, the "dummy" version which writes an error code will be linked into the test pro-
gram. This technique has worked out well in permitting automated processing of many prob-
lems with compile-time errors. It also reduces the number of packaging errors.

3.1.9 Pretest

A Pretest section has been added which leads the user step-by-step through the process of
adapting the ACEC to a new compilation system and verifying that needed facilities are pre-
sent. It checks the accuracy of the system clock, the math library, determines timing loop pa-
rameters, checks if label'ADDRESS is supported, and compiles the baseline files, the programs
which write compiler/linker time stamps, and the analysis tools.

Beta testers reported they particularly liked this addition. It can reduce anxiety of users adapt-
ing the ACEC by helping them avoid blind alleys in adapting the ACEC to a new compilation
system. The summary report form provides a document for recording the changes made in
adapting the ACEC and remembering the configuration tested. One user of an earlier version of
the ACEC reported that he didn't find out that the analysis tools would not compile and run on
the system he was evaluating until he had run all the performance tests and did not have enough
time left on his evaluation schedule to develop an alternative. With release 3.0 he would have

22

known about the problem earlier and might have developed alternatives such as geting a cor-
rected version from the implementor of the compiler, modified code in the analysis tools to
work around problems in the compiler, or arranged to use a different compilation system to per-
form the analysis.

3.2 PROBLEMS ENCOUNTERED

During the development of the ACEC, the test suite and tools were executed on multiple sys-
tems both to verify portability of the code, and to provide sample data to demonstrate the Com-
parative Analysis tools. These are the "trial" systems referred to throughout this report. During
this process, some implementation errors and restrictions were discovered in the trial systems.
as detailed below:
"* Some systems did not support the label'ADDRESS clause (used in the ACEC to measure

code expansion size).

"* Many systems do not support tying tasks to interrupts.

"* Several systems do not support a type 'SMALL specifying a fixed point delta which is NOT
a power of two.

"* Many systems did not support asynchronous 1/0 operations - that is. an I/O operation in any
task causes the program to halt until the 1/O completes.

"* Some systems failed to reclaim implicitly allocated space. The LRM does NOT require that
the space be reused, so this is an implementation restriction rather than an error, but may be a
serious problem to any program which needs to run for a long time.

" Some systems restrict the type of files that can be processed. Test problems using a SE-
QUENTIALTO instantiated with an unconstrained type (that is, STRING) were not ac-
cepted by many systems, as were problems using sequential and direct files with a variant
record. This feature is not supported by many of the trial systems. On the DEC Ada system
the test problems would not run using the default FORM strings and a system-dependent ad-
aptation was necessary.

"* The test problem which calls on an assembly language procedure did not work on all sys-
tems. In several cases, the trial systems claim to support the facility, but the provided docu-
mentation was unclear, and the initial attempt to adapt the test problem failed.

* Capacity limitations - some programs were too large to be compiled by some of the systems.

The implementation-dependent type SYSTEM.ADDRESS is converted to an integer type to
calculate sizes. The size of this integer type is implementation dependent and may need to be
adapted for use on different systems. The need for adaptation is awkward.

23

"* Some implementations imposed restrictions on length clauses. Several only supported the
declaration of specific predefined sizes. For example, several would not accept a specifica-
tion for a the-bit-wide field.

"* Pre-emptive priority scheduling was not supported on all the trial systems. This caused some
of the test problems to report a run-time error.

"* One system (for an embedded target) did not support any file I/O.

"* Some systems did not support an option to specify tasking discipline (time-sliced versus run-
till-blocked). This is NOT required by the LRM, but some classes of programs find it help-
ful.

"* On some systems the algorithm used to choose among the open alternatives in a SELECT
statement is not "fair." (Some open alternatives do not get chosen at all on these systems.)
Fairness is NOT required by the LRM, but some classes of programs find it helpful.

"* A closure (recompilation) facility is required for some of the problems in the Systematic
Compile Speed Group (SY). This was not available on all trial systems.

"• Verification errors were fairly common on the Silicon Graphics system.

The problem with verification errors on the Silicon Graphics seems to be largely due to a
fault in the command files. When the command file was corrected, results changed from 438
verification failures and 135 large negative times to 43 verification failures and no large
negative times.

Most of these problems are not problems in the ACEC as much as they are restrictions of the
trial systems discovered by running the ACEC. They could be considered portability problems
if it were a goal to run the ACEC without modification on all validated compilation systems;
however, since doing so would require the ACEC to avoid testing any system-dependent fea-
tures and to code around errors in compilation systems, this has never been a goal of the ACEC.

3.3 POSSIBLE ENHANCEMENTS

There are several possible enhancements to the ACEC product which would increase the use-
fulness of the ACEC to users, making the ACEC easier and faster to use (particularly faster
with respect to programmer time and effort) and to increase the coverage of ACEC.

• Merge ACEC with the AES.

- Incorporate ideas on user interface from the AES.

> Interactive querying of status of testing.

What problems ran successfully, with errors, or were not attempted yet.

> Interactive selection of sets of tests to be run.

24

> Using results of early testing to automate later adaptations.

Have Pretest query the user once as to what measurement technique to use.

- Incorporate selected tests or groups from AES.

> Adapt existing AES test problems and incorporate them into the ACEC.

> Consider classes of AES tests and add problems to cover the topic.

Test for implementation dependencies.
Collect data to determine run-time system size.

- Incorporate assessors for other environment capabilities.

"> Profiler / Timing analysis tool

"> Cross Reference / Interactive browser

"> Test Coverage tool

"> Test Bed Generator

"> Pretty Printer

"> Stub Generator

"> Syntax Editor

"> Assertion checker

"> Name Expander

"> Source Generator

* Enhance user documentation

There are several areas in which the user documentation might be enhanced. Some users
have suggested that the ACEC documentation be expanded to include all issues which might
affect compiler selection.

A hypertext version of the Guides and VDD would be valuable.

* Enhance the statistical robustness of the problem factor estimates computed by CA.

In the current CA program when comparing five (similar) systems, if the measurements from
four are close and the fifth system is very much larger, the calculated mean will be far from
all the systems and so ALL systems will be flagged as outliers. In such a case, it would be
better if a more robust estimator of central location were used which would be closer to the

25

four similar systems and so only the fifth system would be flagged as an outlier. While using
a median, as in the Release 2.0 analysis tool MEDIAN, would not permit the computation of
confidence intervals, there are statistical techniques which can be used to compute an esti-
mate of the mean which is less affected by one or two outliers. CA uses such a technique
when calculating system factors.

* Enhance the statistical robustness behavior of CA with respect to missing data.

Where the set of systems being analyzed by CA contains a wide performance range of sys-
tems and for a few test problems one of the very slow systems has missing data, the compu-
tation of the mean for these problems will be greatly influenced by the missing data. The
estimated means derived by ignoring the missing data can be very different from the esti-
mates which would have been made if the data from the slow system were available. This
different estimate for the problem mean can also affect the calculation of residuals and the
identification of outliers.

The processing of the GENERIC group for the Summary Over All Groups Report for
compile-time analysis shows this effect; data for the two slower compilation systems were
missing and this resulted in ALL three other systems being flagged as very slow outliers.
This example is also counter-intuitive in that all the systems are shown as slower than aver-
age, which suggests that the estimate for the average should be reduced.

" Extend coverage of ACEC assessors to test for reliability/robustness of a system by using
random self-checking program generators (tailorable to emphasize different language areas).
Observed failure rates for such programs can be used to estimate the number of errors in the
compilation system.

"* Provide more flexible reporting options for SSA, permitting users to select a range of report
styles: from one similar to the AES with much textual descriptions and interpretation of re-
sults; to one similar to the current SSA report; to a very terse style listing only feature name
and results.

The last form may permit a presentation format which lists results from several different sys-
tems on one report, facilitating comparisons between systems.

" Provide for easy comparisons of assessor results. One simple scheme for this would be to
provide for a one line list of question name and results from different systems in separate
columns on one page (this is applicable when results can be presented in a few columns).

It would be possible to perform so, e analysis on the assessor results data, even when it is
not numeric (only reflecting YES/NO results) by highlighting questions where systems did
not have the same response. If the answers to a question are all YES or all NO, the question
does not differentiate between systems and may be omitted in a report designed to highlight
differences between systems.

"* Provide an assessor for compilation system reliability/robustness.

26

* Support for restig Ada 9X fearwei and changing existmg ACEC code which rums out to be
in conflict witn Ada 9X. This is applicable after 9X is adopted

27

4. SUMMARY

Many of the changes made in Release 3.0 offer help in several areas:

"* Ease of use is enhanced by providing a MENU for the analysis tools, the Pretest procedure,
and the renaming to reflect test purposes which eases the selection of subsets.

"* Capability is extended by providing a Capacity Assessor and additional performance tests.

"* The utility of the statistical analysis is enhanced by providing confidence intervals for system
factors.

Running the ACEC Release 3.0 on the trial systems demonstrated that not all validated Ada
compilations systems will accept all valid Ada programs, even excluding those with "obvious"
system dependencies such as tying tasks to interrupts. Ada compilers are large and complex
programs and it should not be too surprising that they are not error-free. While the ACEC was
not designed to test correctness of compilers, it has (since Release 1.0) been effective in discov-
ering errors in implementations. This should be considered as a beneficial side-effect of the
ACEC to the extent that it has encouraged compiler implementors to correct errors.

Having Independent Validation and Verification (IV&V) has been helpful to the ACEC pro-
gram. Comments from experienced beta testers have permitted enhancements to be made to the
product before general release by exposing the product to individuals with a different profes-
sional perspective and background than the developers. Especially with respect to documenta-
tion, an independent reviewer can call attention to issues which seem too obvious to the devel-
opers to require explanation or where descriptions are not clear to individuals not already
familiar with the product. ACEC testers have used different compilation systems and have
pointed out issues which were not problems on the trial systems Boeing used.

The input from the external reviewers has resulted in changes which have improved the ACEC
product by enhancing usability, clarity of documentation, accuracy of tests, scope of coverage
of the suite, and the utility of analysis program results.

While there remain areas of possible enhancement, as discussed in the prior section, Release 3.0
provides a solid baseline for Ada compilation system evaluation which is both easier to use than
the prior releases and provides enhanced functional capabilities.

28

5. NOTES

This section contains information only and is not contractually binding.

5.1 ABBREVIATIONS AND ACRONYMS

ACEC Ada Compiler Evaluation Capability
Ada 9X Future MIL_STD_1815B

CA Comparative Analysis
CPU Central Processing Unit

1/O Input / Output

LRM (Ada) Language Reference Manual (MIL-STD-1815A)

SSA Single System Analysis

TOR Technical Operating Report

VDD Version Description Document

29

